
5.2 The Definite Integral 

 
From the last section we know . . . 

lim𝑛→∞ ∑ 𝑓(𝑥𝑖)∆𝑥𝑛
𝑖=1 = lim𝑛→∞[𝑓(𝑥1)∆𝑥 + 𝑓(𝑥2)∆𝑥 + 𝑓(𝑥3)∆𝑥 + ⋯ + 𝑓(𝑥𝑛)∆𝑥] is found when computing 

an area. 

 

This same type of limit occurs in a wide variety of situation even when f  is not at positive function. 

 

Definition of a Definite Integral:  If f  is a function defined for 𝒂 ≤ 𝒙 ≤ 𝒃, we divide the interval [a, b] into n 

subintervals of equal width ∆𝑥 =
𝑏−𝑎

𝑛
.  We let 𝑥0 = 𝑎, 𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛 = 𝑏 be the endpoints of these 

subintervals and we let 𝑥1
∗, 𝑥2

∗, 𝑥3
∗, ⋯ , 𝑥𝑛

∗  be any sample points (right, left, midpoints, etc…) in these 

subintervals, so 𝑥𝑖
∗ lies in the 𝑖𝑡ℎ subinterval [𝑥𝑖−1, 𝑥𝑖].  Then definite integral of f  from a to b  is 

∫ 𝑓(𝑥)𝑑𝑥 = lim
𝑛→∞

∑ 𝑓(𝑥𝑖
∗)∆𝑥

𝑛

𝑖=1

𝑏

𝑎

 

⋯ provided that this limit exists and gives the same value for all possible choices of sample points.  If it 

does exist, we say that f  is integrable on [a, b]. 

 

∫ 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑠𝑖𝑔𝑛.  In ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
,  𝒇(𝒙) is the integrand,  a and b are the limits of integration where a 

is the lower limit and b is the upper limit,  dx indicates that the independent variable is x and the function 

is being integrated with respect to x. 

 

∑ 𝑓(𝑥𝑖
∗𝑛

𝑖=1 )∆𝑥 is the Riemann Sum.  If f  is positive, then the Riemann Sum is the sum of area of 

approximating rectangles.  

 

Since ∫ 𝑓(𝑥)𝑑𝑥 = lim𝑛→∞ ∑ 𝑓(𝑥𝑖
∗)∆𝑥𝑛

𝑖=1
𝑏

𝑎
, we can see that ∫ 𝑓(𝑥)

𝑏

𝑎
𝑑𝑥 can be interprested as the area under 

the curve  y = f(x)  from a to b. 

 

 
 



If f  is both positive and negative, then the Riemann Sum is the sum of the areas of the rectangles that lie 

above the x-axis minus the areas of the rectangles that lie below the x-axis.  For the diagrams below, the 

area would be interpreted as: 

     ∫ 𝑓(𝑥)𝑑𝑥 =  𝐴1 + 𝐴3 − 𝐴2
𝑏

𝑎
 

      

 
 

 
We have defined the integral for an integrable function, but not all functions are integrable. 

 

Theorem:  If f  is integrable on [a, b], then   

∫ 𝑓(𝑥)𝑑𝑥 = lim
𝑛→∞

∑ 𝑓(𝑥𝑖)∆𝑥

𝑛

𝑖=1

𝑏

𝑎

 

where ∆𝑥 =
𝑏−𝑎

𝑛
  and 𝑥𝑖 = 𝑎 + 𝑖∆𝑥 

 

Example:   Evaluate ∫ (𝑥3 − 6𝑥)𝑑𝑥 
3

0
using the second theorem above. 

We have  ∫ (𝑥3 − 6𝑥)𝑑𝑥 = lim𝑛→∞ ∑ 𝑓(𝑥𝑖)∆𝑥𝑛
𝑖=1

3

0
,  where ∆𝑥 =

𝑏−𝑎

𝑛
=

3−0

𝑛
=

𝟑

𝒏
 and 𝑥𝑖 = 0 + 𝑖

3

𝑛
=

𝟑𝒊

𝒏
 

∫ (𝑥3 − 6𝑥)𝑑𝑥 = lim
𝑛→∞

∑ 𝑓 (
3𝑖

𝑛
)

3

𝑛
= lim

𝑛→∞
∑ ((

3𝑖

𝑛
)

2

− 6 (
3𝑖

𝑛
))

3

𝑛

𝑛

𝑖=1

𝑛

𝑖=1

3

0

= lim
𝑛→∞

∑ (
27𝑖3

𝑛3
−

18𝑖

𝑛
)

3

𝑛

𝑛

𝑖=1
 

lim
𝑛→∞

3

𝑛
∑ (

27𝑖3

𝑛3
−

18𝑖

𝑛
) = lim

𝑛→∞

3

𝑛
[
27

𝑛3
∑ 𝑖3 −

18

𝑛
∑ 𝑖

𝑛

𝑖=1

𝑛

𝑖=1

]
𝑛

𝑖=1
= lim

𝑛→∞
[
81

𝑛4
∑ 𝑖3 −

54

𝑛2
∑ 𝑖

𝑛

𝑖=1

𝑛

𝑖=1
] = 

 

lim
𝑛→∞

[
81

𝑛4
(

𝑛(𝑛 + 1)

2
)

2

−
54

𝑛2
(

𝑛(𝑛 + 1)

2
)] = lim

𝑛→∞
[
81

𝑛4
(

𝑛2(𝑛2 + 2𝑛 + 1

4
) −

54

𝑛2
(

𝑛(𝑛 + 1)

2
)] = 

lim
𝑛→∞

[
81

4
(

𝑛2(𝑛2 + 2𝑛 + 1

𝑛4 𝑛2
) −

54

2
(

𝑛(𝑛 + 1)

𝑛2 𝑛
)] = lim

𝑛→∞
[
81

4
(

𝑛2 + 2𝑛 + 1

𝑛2
) −

54

2
(

𝑛 + 1

𝑛
)] 



lim
𝑛→∞

[
81

4
(1 +

2

𝑛
+

1

𝑛2
) −

54

2
(1 +

1

𝑛
)] =

81

4
− 27 =

−27

4
= −6.25 

 

This integral can’t be interpreted as an area since f  takes on both positive and negative values and areas 

can’t be negative. 

 

Example:  Evaluate the following integrals by interpreting each in terms of geometric areas.  In other 

words, you will use geometric area formulas.  f(x) is graphed below. 

a)  ∫ 𝑓(𝑥)𝑑𝑥
2

0
   

 

b) ∫ 𝑓(𝑥)𝑑𝑥
4

0
 

 

c)∫ 𝑓(𝑥)𝑑𝑥
6

0
 

 

 

 

a)  ∫ 𝑓(𝑥)𝑑𝑥 = 𝐴1 + 𝐴2 + 𝐴3
2

0
= (1)(1) +

1

2
(1)(1) + (2)(1) = 1 + .5 + 2 = 𝟑. 𝟓  

 
 

b)  ∫ 𝑓(𝑥)𝑑𝑥 = 𝐴1 + 𝐴2 + 𝐴3
4

0
= (1)(1) +

1

2
(1)(1) + (3)(2) = 1 + .5 + 6 = 𝟕. 𝟓    

 
 

c)  ∫ 𝑓(𝑥)𝑑𝑥 = 𝐴1 + 𝐴2 + 𝐴3 + 𝐴4 − 𝐴5 = (1)(1) +
1

2
(1)(1) + (3)(2)

6

0
+

1

2
(1)(2) −

1

2
(1)(2) 

               = 1 + .5 + 6 + 1 – 1 = 7.5 

 
 

Properties of the Definite Integral – assume that a < b. 

 



∫ 𝒇(𝒙)𝒅𝒙 =  − ∫ 𝒇(𝒙)𝒅𝒙

𝒃

𝒂

𝒂

𝒃

 

 

If a = b, then ∆𝑥 = 0 and  

∫ 𝒇(𝒙)𝒅𝒙 = 𝟎

𝒂

𝒂

 

Properties of the Integral 

𝟏.   ∫ 𝒄 ∙ 𝒅𝒙 = 𝒄(𝒃 − 𝒂),

𝒃

𝒂

  𝑤ℎ𝑒𝑟𝑒 𝒄 𝑖𝑠 𝑎𝑛𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝟐.  ∫[𝒇(𝒙) + 𝒈(𝒙)]𝒅𝒙 = ∫ 𝒇(𝒙)𝒅𝒙 + ∫ 𝒈(𝒙)𝒅𝒙

𝒃

𝒂

𝒃

𝒂

𝒃

𝒂

 

𝟑.  ∫ 𝒄 ∙ 𝒇(𝒙)𝒅𝒙 = 𝒄 ∙ ∫ 𝒇(𝒙)𝒅𝒙, 𝑤ℎ𝑒𝑟𝑒 𝒄 𝑖𝑠 𝑎𝑛𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝒃

𝒂

𝒃

𝒂

 

𝟒.  ∫[𝒇(𝒙) − 𝒈(𝒙)]𝒅𝒙 = ∫ 𝒇(𝒙)𝒅𝒙 − ∫ 𝒈(𝒙)𝒅𝒙

𝒃

𝒂

𝒃

𝒂

𝒃

𝒂

 

𝟓.  ∫ 𝒇(𝒙)𝒅𝒙 + ∫ 𝒇(𝒙)𝒅𝒙 = ∫ 𝒇(𝒙)𝒅𝒙

𝒃

𝒂

𝒃

𝒄

𝒄

𝒂

 

For Property #5, below is a graphical representation. 

 

 
 

 

Comparison Properties of the Integral. 

 

6.  If 𝒇(𝒙) ≥ 𝟎 𝑓𝑜𝑟 𝒂 ≤ 𝒙 ≤ 𝒃, 𝒕𝒉𝒆𝒏 …  

∫ 𝒇(𝒙)𝒅𝒙 ≥ 𝟎

𝒃

𝒂

 

7.  If 𝒇(𝒙) ≥ 𝒈(𝒙) 𝑓𝑜𝑟 𝒂 ≤ 𝒙 ≤ 𝒃, 𝒕𝒉𝒆𝒏 …  



∫ 𝒇(𝒙)𝒅𝒙 ≥ ∫ 𝒈(𝒙)𝒅𝒙

𝒃

𝒂

𝒃

𝒂

 

8.  If 𝒎 ≤ 𝒇(𝒙) ≤ 𝑴 𝑓𝑜𝑟 𝒂 ≤ 𝒙 ≤ 𝒃, 𝒕𝒉𝒆𝒏 …   

𝒎(𝒃 − 𝒂) ≤  ∫ 𝒇(𝒙)𝒅𝒙 ≤ 𝑴(𝒃 − 𝒂)

𝒃

𝒂

 

 

All of these properties can be proved. 

 

Example:  Use property 8 to estimate the value of the integral.   

∫ 𝐭𝐚𝐧(𝒙) 𝒅𝒙

𝝅
𝟑

𝝅
𝟒

 

 

Graph the tangent function from 
𝜋

4
 to 

𝜋

3
.  We see that 1 ≤ tan (𝑥) ≤ √3 for 

𝜋

4
≤ 𝑥 ≤

𝜋

3
 

Thus: 

𝟏 (
𝝅

𝟑
−

𝝅

𝟒
) ≤ ∫ 𝒕𝒂𝒏 𝒙 𝒅𝒙

𝝅
𝟑

𝝅
𝟒

≤ √𝟑 (
𝝅

𝟑
−

𝝅

𝟒
) 

 

𝝅

𝟏𝟐
≤ ∫ 𝒕𝒂𝒏 𝒙 𝒅𝒙

𝝅
𝟑

𝝅
𝟒

≤
√𝟑𝝅

𝟏𝟐
 

 


